
The single platform to analyze, test, observe, evaluate and fine-tune new AI features
The single platform to analyze, test, observe, evaluate and fine-tune new AI features
If you're putting Agents into the wild, you need to know when they go AGI.
Okay maybe not full AGI... but definitely when something breaks.
We just launched Okareo Error Reporting on Product Hunt built to help teams detect, debug, and recover from LLM/Agent errors fast. No more flying blind in production.
I m Matt, CEO & Co-founder of Okareo, and I ll be hanging out in the comments today doing an AMA. Ask me anything LLM ops, error detection strategies, startup life, whatever s on your mind.
Let s dig in: https://www.producthunt.com/post...
Both the user interface and the integration of the platform are exceptionally smooth, which allows you to focus on what really matters in your system. OKAREO is immensely helpful to see what's going on under the hood. I have used OKAREO with RAG and it has been helpful to gain a better understanding of the strengths and opportunities for improvement of my system. Also, the technical support of OKAREO is impressive, they have provided solutions to all my questions to build my evaluation pipelines, and they gave me good advice to improve my product.
Okareo is a game-changer for AI teams. I’ve tried a bunch of tools for tuning and evals, but Okareo stands out. Highly recommend!
Okareo
Hi Product Hunt — I’m Matt, Co-Founder & CEO of Okareo 👋
Thrilled to launch Okareo Error Reporting today 🚀
If you’re spending hours chasing down Agent or RAG issues from scattered traces, Okareo can help. We deliver real-time error reporting through behavioral alerts, seamlessly connected to a structured evaluation and persona-based simulation suite — so you can debug more conditions, faster, and with confidence.
Our immediate goal is to help teams ship agents to production faster and with higher confidence — but the bigger vision is a virtuous loop where agents continuously self-improve.
We’d love for you to take it for a spin and share your feedback — what’s working, what’s missing, and what you'd love to see next.
Thanks for checking us out!
AppSave by Appscribed
@matt_wyman Hey Matt, Interesting launch. Congrats. This seems like a big issue. These Agents eat up resources when they end up in loops erroneously. Do you have any numbers to share of simple AI agents like a AI calling app as a common use case.
Okareo
Hello @imraju ! I'm an ML engineer at Okareo, and I can give some insight here.
An agent looping is indeed a common and highly wasteful error pattern. On our error detection platform, we have a "check" (i.e., an LLM-based evaluation) called "Loop Guard." Loop Guard helps us detect when agents are stuck in repetitive patterns, and for one of our development partners, we have seen as much as 25% of their production traffic shows looping behavior.
@matt_wyman Nice launch Matt. Agents self evolve is key, how do you explain to the users though? How exactly do we know it can improve?
@matt_wyman BTW upvote to you!
Okareo
Hello there @halgod 👋🏽 when we apply a "check" (i.e., an LLM-based evaluation) to an incoming datapoint, the check returns both an outcome (i.e., "pass" or "fail") as well as an explanation. The explanation can be used to help identify the root cause of a failure and to inform the agent developer what improvements can be made to the agent (or the agent network).
No more sifting through a mess of traces – debugging just got a whole lot clearer (and faster!). 🆒
Okareo is phenomenal, was one of their first customers and they absolutely crushed it